CSCI 210: Computer Architecture
Lecture 1: Introduction

Stephen Checkoway
Oberlin College
Slides from Cynthia Taylor

Previous Conceptions of How Computers Work

What is a computer?

What is a computer?

What is a computer?

By Tmthetom - Own work, CC BY-SA 4.0,
https://commons.wikimedia.org/w/index.php?c

By IFCAR - Own work, Public Domain, .
urid=40636987

https://commons.wikimedia.org/w/index.php?c
urid=17238574

By Kskhh - Own work, CC BY-SA 4.0,
https://commons.wikimedia.org/w/index.php?curid=84103399

What is a computer?

What is a computer?

< e
J .."’él'r.f"lllv..l 3
“'R3 R
] 3 £

i
59

—
s
e O

—
- . o~

-
-,

Babbage’s Difference Engine

Computer Science History: Ada Lovelace
* Daughter of Lord Byron

* Wrote programs for the
theoretical Analytical
Engine

* |Invented the idea of loops

Comic by Kate Beaton, http://www.harkavagrant.com/index.php?id=298

What is a computer?

0

1

* A device that reliably combines a given set of inputs to create
the same output

But how does it Python?

def main():
n = eval{input{ "How many numbers should I sum?: "))

sum = @

for 1 1n range(l,n+1):

L sum = sum + i

print(“"The sum of the first", 1, "positive integers 1s", sum)

maindg)

Answer: Abstractions!

We build high-level complex things by abstracting away the
low-level complicated details

We design computer systems in terms of these abstractions

Abstractions are similar to metaphors (e.g., “display this text
file in a window”)

This works by building progressively more low-level
abstractions
— It takes a lot of work to display text in a window; one step along the

way is “draw a line on the screen” which itself needs “color a pixel on
the screen”

Discuss with your neighbors

* Introduce yourselves

 What are some different metaphors we use in computers?
— Desktop, bugs, ??

Levels of Abstraction

User Interfaces

High Level Languages
Assembly Language
Instruction Set Architectures

Physical chip

In This Class

 What are the fundamentals we build these abstractions on top
of?

e How do we create these abstractions?

Who am I?
Professor Stephen
Checkoway

e Research: Computer
security, unexpected
computation

* Fun Facts:
—I’'m face blind

— | have three Oberlin
cats

Class will be graded based on:

labs — Programming assignments
Problem Sets — Written assignments

Reading Exercises — Short daily quizzes; due before class
starting Wednesday!

Class participation — Clicker questions!
Final project — simulating memory and running experiments

Labs

* Programming assighnments designed to explore the
architecture concepts we learn in class

— MIPS, Rust, logic gates

Problem Sets

* Written assignments where you solve problems related to
computer architecture

* Examples:
— Converting decimal numbers to binary or hex
— Simple assembly language programs
— Drawing circuit diagrams
— Answering questions about the CPU

Problem Sets

* Can be resubmitted within 1 week of receiving your grade

* Final problem set grade is 25% your original submission grade,
75% your new grade.

* Problem Set O due Friday, September 6 at 23:59

Reading

* We will be using Patterson and Hennessy’s

Computer Organization and Design EDMP”TER UHBAMZM'UN
AND DESIGNMIES EDiTON
THE ARDWARE/SOFWARE NTAFACE

B S EDON

* This book is available to you for free from
O’Reilly; you’ll need to create an account
with your Oberlin email address if you don’t
already have one

oee - i
M< DAWMH“MH&JWHLHENW}

25

Reading exercises on BlackBoard

* The daily
reading is listed
in the course
schedule

* There’s a link to
each reading
exercise in
BlackBoard

Intro to Computer
Architecture

Announcements

Course Information

My Grades
Course Website

Ed Forum

Gradescope

Reading exercises

Reading §1.3 AV

This is a link to a Gradescope assignment.

Reading §1.4-1.5 A¥

This is a link to a Gradescope assignment.

Reading §2.1-2.2 A¥

This is a link to a Gradescope assignment.

26

Reading

 Due BEFORE CLASS on the day it is listed on the class schedule
* All readings exercises linked from BlackBoard

* FIRST READING DUE WEDNESDAY

Clickers!

* Lets you vote on multiple choice questions in real time.

* Like pub trivia, except the subject is always computer
architecture.

* You need one by Monday

iClicker Accounts

You must create an iClicker account to ensure your grades are counted:
Visit iClicker.com > Create an Account > Student.

Or, download the iClicker Student iOS/Android app. Select Sign Up! to create
your account.

If you already have an iClicker account, just sign in! Do not create and use more
than one iClicker account as you will only receive credit from a single account.

If you have a physical iclicker, you do not need to pay anything for the account —
just enter the iclicker id

Masking Policy

* I’'m going to be wearing a mask
* You may wear a mask at any point for any reason
* |f you're feeling unwell or recovering from iliness, please mask

Questions?

How This (and every) Class Works

* | try to create an optimal situation for you to learn the material

* You and your classmates work together to construct new
knowledge

* Our goal as a class is to support each other in learning

Group Discussion Norms

Make sure everyone gets to talk.

Have everyone state their answer before discussing which
answer is correct.

Take turns reporting out.

If you think someone is wrong, ask them to explain their
thinking rather than just dismissing it.

Class Norms

* Contribute as you feel comfortable
— If you're not comfortable answering, you can pass.

— If you're not usually inclined to speak much in class, push yourself to ask
guestions more often.

* Be aware of the space you take up in class
— Make space for others, use some space for yourself

* The main goal of every person in the class should be to engage
proactively with the ideas we understand the least. If someone asks
a question/makes a comment that seems obvious to you, show
them respect.

Collaboration Policy

Discuss the labs/problem sets with anyone
Post questions on Ed

Don’t show anyone your code

If you work through how to solve a problem, please change
relevant numbers from the assigned problems

Must write down answers separately

Questions?

The Challenge of Computer Architecture

* The industry changes faster than any other

 The ground rules change every year
— new problems
— new opportunities
— different tradeoffs

* |t's all about making programs run faster or use less energy or
provide more features than the other company’s machine

Moore’s Law

Moore’s Law: The number of transistors on microchips doubles every two years
in Data

Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years.
This advancement is important for other aspects of technological progress in computing - such as processing speed or the price of computers.

Transistor count
50,000,000,000

10,000,000,000
5,000,000,000

1,000,000,000
500,000,000

100,000,000
50,000,000

hw) .
'9 © 0 06 QAtom

Pentium |Il Tualatin

80‘.,‘-‘.“ Coppernine &

0 ku \ Catma

10,000,000
5,000,000

1,000,000
500,000

100,000
50,000

10,000 e,
s000 °

1,000

Q AV AX Ab A O b o b O O NV o> o O O & b & O

AR A e LT A ST S S utire vo LIPS AP o LIPS vo MPLe RPEe RPN MPe Ao Q O Q O XY

\q\q\q\q\q\q\q\qqqqo\qq\q%r@%%@@
Data source: Wikipedia (wikipedia.org/wiki/Transistor_count) Year in which the microchip was first introduced

OurWorldinData.org - Research and data to make progress against the world's largest problems. Licensed under CC-BY by the authors Hannah Ritchie and Max Roser.

Clock rate and Power with Time

(spem) Jemod

- 120
+ 100

o O O O
0 © <= N O
1 1 1 1

(8L02) @je 88yo)d
Gl 810D

600
&l
5

9

.

(9L02) aellys
Gl 810D

&

+

(€1L02) lemseH
Gl 810D

£
84

B

(0L0Z) @lepxie|D
Gl 810D

-4+

(2002) piaysiuay
Z 910D

o

(#002) Noosaid
p wnnuad

3600 2667 3300 3500 3500 3

-+

(100Z) enawe||ipn
 wnpuad

2000
D

e

(2661) 0id
wnnuad

200

66 >

(€661)
wniuad

(6861)
9808

Clock Rate

(g861)
98€08

(zg61)
98208

™
™

10,000 +
1000 +
100 +

(zHW) @1y 20|10

Cooling

* CPUs get HOT
— Switching those little transistors on and off takes power!

— Power turns into heat.

* |f they get too hot, they will burn out

* Can no longer efficiently cool all transistors on a chip at speeds
we would like

All is not lost

If we can’t run a single instruction faster, what if we run a
bunch of instructions at once?

Intel Quad Core Intel Nehalem Intel: 80-core prototype

Problems we (YOU) have to deal with when writing
parallel code

* Only works for tasks that aren’t overly sequential.
* Have to be able to balance what tasks are running on all cores.

* Have to deal with overhead of scheduling and communication.

If one process can run a program at a
rate of X per second, how quickly can
two processes run a program?

A. Slower than one process (<X)
B. The same speed (X)

C. Faster than one process, but not double (X-
2X)

D. Twice as fast (2X)
E. More than twice as fast(>2X)

Code PERFORMANCE is dictated by
COMPUTER ARCHITECTURE

* The goal of this class is NOT to make you into electrical
engineers

* The goal of this class is to expose you to the world of computer
design:
— Using a historical perspective will lead us from simpler to more
complex designs

— Will help you understand what in a design leads to better
performance

Understanding Computer Architecture Will Let You

 Write better code
 Write faster code

* Understand what is and isn’t possible

You need computer architecture if you’re a:

Hardware designer
Embedded systems programmer
Computer Security professional

Video Game Speedrunner

Reading

* Next lecture: Assembly Language

— Read book Section 1.3 & 1.4 and answer questions on Gradescope

* Problem Set O due Friday

	Slide 1: CSCI 210: Computer Architecture Lecture 1: Introduction
	Slide 3: Previous Conceptions of How Computers Work
	Slide 4: What is a computer?
	Slide 5: What is a computer?
	Slide 6: What is a computer?
	Slide 7: What is a computer?
	Slide 8: What is a computer?
	Slide 9: Babbage’s Difference Engine
	Slide 10: Computer Science History: Ada Lovelace
	Slide 11: What is a computer?
	Slide 12: But how does it Python?
	Slide 13: Answer: Abstractions!
	Slide 15: Discuss with your neighbors
	Slide 17: Levels of Abstraction
	Slide 18: In This Class
	Slide 19: Who am I? Professor Stephen Checkoway
	Slide 20: Class will be graded based on:
	Slide 21: Labs
	Slide 22: Problem Sets
	Slide 23: Problem Sets
	Slide 25: Reading
	Slide 26: Reading exercises on BlackBoard
	Slide 27: Reading
	Slide 28: Clickers!
	Slide 29: iClicker Accounts
	Slide 32: Masking Policy
	Slide 33: Questions?
	Slide 34: How This (and every) Class Works
	Slide 35: Group Discussion Norms
	Slide 36: Class Norms
	Slide 39: Collaboration Policy
	Slide 40: Questions?
	Slide 41: The Challenge of Computer Architecture
	Slide 42: Moore’s Law
	Slide 43: Clock rate and Power with Time
	Slide 44: Cooling
	Slide 45: All is not lost
	Slide 46: Problems we (YOU) have to deal with when writing parallel code
	Slide 47: If one process can run a program at a rate of X per second, how quickly can two processes run a program?
	Slide 48: Code PERFORMANCE is dictated by COMPUTER ARCHITECTURE
	Slide 49: Understanding Computer Architecture Will Let You
	Slide 50: You need computer architecture if you’re a:
	Slide 51: Reading

